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Abstract

Vibration isolators have been extensively used to reduce the vibration and noise transmitted between the
components of mechanical systems. Although some previous studies on vibration isolation considered the
inertia of isolators, they only examined its effects on the vibration of single degree-of-freedom (d.o.f.)
systems. These studies did not emphasize the importance of the isolators’ inertia, especially from the
perspective of noise reduction. This paper shows that the internal dynamics of the isolator, which are also
known as internal resonances (IRs) or wave effects, can significantly affect the isolator performance at high
frequencies. To study the IR problem, a model of a primary mass connected to a flexible foundation
through three isolators is used. In this model, the isolator is represented as a one-dimensional continuous
rod that accounts for its internal dynamics. The primary mass is modelled as a rigid body with three d.o.f.’s.
The effects of the IRs on the force transmissibility and the radiated sound power from the foundation are
examined. It is shown that the IRs significantly increase the force transmissibility and the noise radiation
level at some frequencies. These effects cannot be predicted using a traditional model that neglects the
inertia of the isolator. The influence of the foundation flexibility on the IRs is also investigated. It is shown
that the foundation flexibility greatly affects the noise radiation level but it affects only slightly the force
transmissibility, especially at high frequencies where the IRs occur.
r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Vibration isolators have been extensively used to reduce the vibration induced in structures,
e.g., automobiles, buildings, airplanes, and so forth, by machinery and to protect sensitive
equipment from vibrations of the supporting structure.
A traditional vibration isolation model deals with a rigid mass, representing a piece of

equipment, mounted on a rigid supporting structure via a massless isolator with pure spring
stiffness and viscous damping as shown in Fig. 1(a). (The term traditional in this paper refers to a
model with a massless isolator or a model with a massless isolator and viscous damping.)
Normally, the primary mass is assumed to have only one degree of freedom (d.o.f.) that results in
a single d.o.f. (s.d.o.f.) system. This model can be found in many textbooks and papers on
mechanical vibrations [1–3].
The performance of an isolator is normally determined using the force transmissibility function,

which is defined as the ratio of the transmitted force through the isolator to the excitation force.
The force transmissibility curve of the traditional model with an ideal, i.e., massless, isolator has
only one peak corresponding to the system resonance at the natural frequency on: As shown in
Fig. 2, the traditional model predicts that the attenuation of the transmissibility will occur at
frequencies o >

ffiffiffi
2

p
on: For a low damping ratio, e.g., zp0:1; and frequencies well above the
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Fig. 1. Isolator modelled as (a) massless spring and a viscous damper or (b) continuous rod with mass, stiffness and

damping.
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Fig. 2. The transmissibility function of the traditional s.d.o.f. model with massless isolator: ——, z ¼ 0:01;
� � � � � � � � � � � , z ¼ 0:1; – � – � , z ¼ 0:5:
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system resonant frequency, the transmissibility decreases at a rate of 12 dB per octave [4, 5]. For
frequencies oo

ffiffiffi
2

p
on; the transmissibility is greater than one, i.e., the isolator amplifies the

transmitted force. The transmissibility at the resonant frequency reduces, while the isolator
performance degrades in the isolation region, as the damping ratio increases.
However, practical isolators have mass, and thus they have their own dynamics. These

dynamics are associated with the resonance behavior of the elastic motion of the isolator, and they
are known as the internal resonances (IRs) of isolators. Fig. 1(b) shows a more ‘‘realistic’’ isolator
model than that of Fig. 1(a), which can illustrate the phenomenon of IRs. The isolator is modelled
as a continuous elastic rod with density r and structural damping characterized by the loss factor
Z: The force transmissibility function of the s.o.d.f. system with this isolator model is plotted in
Fig. 3. For comparison, the transmissibility of the same system calculated using the traditional
model with the same damping is also shown in Fig. 3. Compared with the traditional massless
model, the transmissibility curve of the ‘‘realistic’’ isolator shows peaks at the system resonance
(as the massless isolator) as well as at the isolator’s IRs. In addition, the transmissibility for the
realistic isolator does not decrease monotonically with frequency, as it would for a massless
isolator. So if one neglects the mass effects of a realistic isolator, one will over-estimate the
performance of the isolator at high frequencies.
Since 1950s, several authors have studied isolators’ IRs (also referred as wave effects) in both

metal springs [6, 7] and viscoelastic isolators [4, 5, 8–11]. Since the lower the loss factor of the
isolator the more significant are the wave effects, the IR problem in metal springs has attracted
more attention than that in viscoelastic isolators because of the low damping of metal materials.
Lee and Thompson [6] pointed out that the IRs in metal coil springs lead to significant dynamic
stiffening above a certain frequency. For an automotive suspension spring, this occurs at
frequencies as low as about 40Hz. Lee and Thompson presented a method for calculating the
dynamic stiffness of a helical coil spring and obtained the natural frequencies corresponding to the
internal resonances from this method. Tomlinson [7] described the wave effects and demonstrated
their importance in metal coil springs both theoretically and experimentally. Tomlinson also
proposed a method to minimize the wave effects by using a parallel-mount isolator, which
employs a metal coil spring acting in parallel with a polymeric damping material. The polymeric
material, which has a high loss factor, helps dissipate the wave effects while the metal coil spring
supports heavy components.
Most of the viscoelastic isolators are made of rubber materials. To the best of the authors’

knowledge, the idealized ‘‘long-rod’’ model for a cylindrical rubber isolator was generally used by
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Fig. 3. Typical transmissibility function of realistic vibration isolator: – – – –, massless isolator; ——, realistic isolator.
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previous researchers to show the wave effects. Ungar and Dietrich [8] calculated the IRs for some
isolators that have simple geometries and deformation. They qualitatively explained that the wave
effects are more important in a heavier, larger isolator than those in a lighter, smaller isolator of
equal static stiffness. Harrison et al. [4] studied the wave effects in isolation mounts by evaluating
the force transmissibility both analytically and experimentally. They concluded that the wave
effects could increase the transmissibility of a mount in certain frequency ranges by as much as 20
dB above the transmissibility that would be predicted from the massless isolator theory. They also
mentioned that for practical mounts, wave effects are most detrimental in the most audible
frequency range (500–1000Hz). The effects of the IRs change with the material properties of
isolators. Sykes [9] tabulated data about the dynamic mechanical properties for some common
mount materials, which permits one to estimate IRs from known wave velocities. These wave
velocities are governed by properties of isolator material, as well as by the deformation type (e.g.,
shear, compression, flexure). Ungar [10] compared the wave effects in viscoelastic leaf (flexural
waves) and compression (longitudinal waves) spring mounts. Snowdon [5,11] pointed out that the
wave effects would be observed in high frequencies when the mount dimensions become
comparable with multiples of the half-wavelengths of the elastic waves traveling through the
mounting. Although Snowdon also noticed that the wave effects could impair the isolator’s
performance, he concluded that they are not always important because the relatively high
damping in practical rubber isolators could attenuate these wave effects.
The majority of previous results were obtained using a simple s.d.o.f. model that accounts for

the isolator’s mass. This model only examines the IRs effects on the vibration isolation. However,
the major limitation of previous studies is that they did not investigate the IR problem from the
perspective of noise reduction. As mentioned earlier in this paper, although the IR problem has
been identified, some researchers concluded that this problem is not significant. The authors
believe that this conclusion can be wrong, and that the IRs can be important because: (1) previous
studies examined the effects of IRs on the vibration but not on the radiated noise of a system; (2)
IRs occur at high frequencies (e.g., above 500Hz), where noise is particularly bothersome, and
previous researchers did not investigate the isolator performance in this frequency range; and (3)
previous researchers used a s.d.o.f. model, which is not adequate to investigate the significance of
the IRs in practical isolators.
The objective of this paper is to study the effects of the IRs of vibration isolators on the isolator

performance in terms of both vibration isolation and noise reduction. The effects of IRs and their
significance will be shown by comparing the response of a system with ideal massless isolators to
the response of the same system but with practical isolators that have mass.
In the following sections, an analytical model is first developed. This model uses three d.o.f.’s to

describe the motion of the primary mass. Therefore, it represents a practical isolation system more
accurately than a s.d.o.f. model. When modeling an isolator, this paper adopts the ‘‘long-rod’’
theory as used by previous researchers. The isolator has constant modulus and loss factor in the
frequency range that is of interest, which is approximately true for most practical vibration
isolators [4,5]. This treatment allows the model to show the importance of IRs without
introducing additional complexity. In addition, the effect of the variation of the isolator’s
modulus and loss factor with frequency is also briefly discussed. The ‘‘slender rod’’ model is
applicable to both cylindrical isolators made of viscoelastic materials and helical springs made of
metallic materials because helical springs can be considered as long-rods in longitudinal vibration
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[7]. The effects of the IRs on an isolator’s performance are assessed using two metrics: (1) the force
transmissibility of the isolator, and (2) the sound radiated by the foundation. Previous authors did
not consider the second metric. It is shown that the IRs can increase the force transmissibility in
certain frequency ranges by as much as 20–30 dB above the transmissibility predicted from a
massless isolator model. The IRs can also increase the noise radiated by the foundation of a
system with ideal, massless isolators by 3–22 dB in the frequency range from 200 to 3000Hz.

2. Modelling approach for the internal resonance problem

This section describes the analytical model used to investigate the effects of isolators’ IRs on the
force transmissibility and the radiated noise. As shown in Fig. 4, the model is developed based on
a system consisting of a primary mass connected to a flexible foundation through three isolators.
The system is subjected to an external force with amplitude F0 acting at an arbitrary location on
the primary mass. This vibration system could be an idealization of an engine supported through
three isolators to the body of a car. The primary mass is modeled as a rigid body with three d.o.f.s,
which are the translation in the y- (vertical) direction and rotations about the x- and z- axis
through the center of gravity. Therefore, the center of gravity of the primary mass can only move
in the vertical direction. This model is called 3 d.o.f. model based on the number of d.o.f. of the
primary mass. To directly relate the motion of the primary mass with the displacements at the
ends of the isolators, the three vertical translations, YTi, where i=1, 2, and 3, at the mounting
points between the isolators and the primary mass are used as the three d.o.f. s of the primary
mass in the model. Each isolator is considered as a ‘‘one-dimensional’’ continuous rod that
accounts for its own inertia. All joints between the isolators and the primary mass, and between
the isolators and the foundation are pinned. Therefore, each isolator transfers forces along its axis
only. The flexible foundation is considered as a simply supported rectangular plate that can
vibrate and radiate noise to the ambient fluid. The displacements at the connection points between
the isolators and the foundation are denoted as YBi. Because the forces transmitted through the
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isolators are considered as the only inputs to the plate, the radiated noise by the plate is sensitive
to changes in the isolator performance. Furthermore, for the system considered in Fig. 4, only the
noise radiated by the foundation is affected by the isolator’s properties. Therefore, when
examining the IR effects, only the acoustic power radiated by the foundation will be calculated.
The equations of motion (EOM) of the components and the system in Fig. 4 are presented in

the following sections. The model is developed in the frequency domain so both the force
transmissibility and the radiated sound power are given as functions of frequency.

2.1. Dynamic stiffness matrix of the isolator

Each of the cylindrical isolator in the 3d.o.f. system is modelled as a continuous uniform rod in
axial motion as shown in Fig. 5. The relationship between the longitudinal displacements and
external forces at the ends of the isolator is given by

½D�
uðLÞ

uð0Þ

( )
¼

F1

F2

( )
; ð1Þ

where

½D� ¼
Dd �Do

�Do Dd

" #
; ð2Þ

is the dynamic stiffness matrix of the isolator. The terms in matrix [D] are obtained in closed form
in Appendix A. These terms are:

Dd ¼ kS *E cotðkLÞ; Do ¼
kS *E

sin ðkLÞ
; ð3a;bÞ
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where *E ¼ Eð1þ jZÞ is the complex modulus of elasticity; E is the modulus of elasticity, i.e.,

Young’s modulus in this case; Z is the loss factor; k ¼ o=c is the wavenumber; c ¼
ffiffiffiffiffiffiffiffiffi
*E=r

q
is the

complex wave speed in the isolator; r is the density, S is the isolator’s cross-sectional area, and L

is the length of the isolator.

2.2. Equilibrium equations of the system consisting of the primary mass, the isolators and the

foundation

The EOM of the fully coupled system in Fig. 4 is derived by first modelling the substructures
consisting of (a) the primary mass and isolators, and (b) the foundation separately. The two
substructures are then coupled by imposing conditions for continuity of forces and displacements
at their interfaces, i.e., at the isolators’ attachment to the foundation. Fig. 6 shows the
substructure consisting of the primary mass and the isolators separated from the foundation.
Since only the displacement at each end of the isolators is of interest, six displacements need to be
calculated. These are the six d.o.f.s used to describe the motion of the primary mass–isolators
substructure. Displacements at the mounting points between the primary mass and isolators are
denoted by subscript ‘‘T ’’ (top of the isolator), while displacements at the mounting points
between the foundation and isolators are denoted by subscript ‘‘B’’ (bottom of the isolator).
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The EOMs of the primary mass–isolators substructure can be written as (see Appendix B for
detail)

½Ds�

YT1

YT2

YT3

YB1

YB2

YB3

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

DT1T1 DT1T2 DT1T3 DT1B1 DT1B2 DT1B3

DT2T1 DT2T2 DT2T3 DT2B1 DT2B2 DT2B3

DT3T1 DT3T2 DT3T3 DT3B1 DT3B2 DT3B3

DB1T1 DB1T2 DB1T3 DB1B1 DB1B2 DB1B3

DB2T1 DB2T2 DB2T3 DB2B1 DB2B2 DB2B3

DB3T1 DB3T2 DB3T3 DB3B1 DB3B2 DB3B3

2
6666666664

3
7777777775

YT1

YT2

YT3

YB1

YB2

YB3

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

FT1

FT2

FT3

�FB1

�FB2

�FB3

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
; ð4Þ

where [Ds] is a 6	 6 dynamic stiffness matrix of the primary mass–isolators substructure. The
term Drs, for r, s=T1, T2, T3, B1, B2, B3, represents the force at the rth d.o.f. due to a unit
displacement at the sth d.o.f. of the primary mass–isolators substructure. The displacements YT1 ;
YT2and YT3 at the mounting points between the primary mass and isolators are the three d.o.f.’s
describing the motion of the primary mass. Accordingly, the original external force F0 is split into
three components FT1 ; FT2 and FT3 that are statically equivalent to F0. These three forces are
considered as excitations applied at the top of each isolator through the primary mass. The
displacements of the points at which the isolators are connected to the foundation are denoted as
YB1 ; YB2 and YB3 : Likewise, the forces transmitted to the foundation through the three isolators
are denoted as FB1 ; FB2 and FB3 :Note that the transmitted force through the ith isolator, FBi; is the
superposition of the effects of the three excitation forces, i.e., FBi ¼

P
j¼1; y; 3 fij ; where fij

represents the transmitted force through isolator i due to the external force FTj (Fig. 6).
Similarly, the EOMs of the foundation substructure are written as

½ #DF �

YB1

YB2

YB3

8><
>:

9>=
>; ¼

#DB1B1
#DB1B2

#DB1B3

#DB2B1
#DB2B2

#DB2B3

#DB3B1
#DB3B2

#DB3B3

2
664

3
775

YB1

YB2

YB3

8><
>:

9>=
>; ¼

FB1

FB2

FB3

8><
>:

9>=
>;: ð5Þ

The 3	 3 matrix ½ #DF � in Eq. (5) is the dynamic stiffness matrix of the foundation. This matrix can
be obtained as the inverse of the dynamic receptance matrix of the foundation ½ #R� [1]. That is

½ #DF � ¼ ½ #R��1 ¼

#RB1B1
#RB1B2

#RB1B3

#RB2B1
#RB2B2

#RB2B3

#RB3B1
#RB3B2

#RB3B3

2
664

3
775
�1

; ð6Þ

where the term #Rrs; for r, s=B1, B2, B3, in the dynamic receptance matrix represents the
displacement at rth point due to a unit force applied at the sth point on the foundation. The
dynamic receptance matrix is obtained from the model of the foundation, which is a simply
supported rectangular plate. Since the model for plate vibration is well known [12,13], it will not
be presented here.
According to the continuity conditions, the displacements of the lower ends of the three

isolators and the corresponding points on the foundation are equal. Therefore, the three entries of
the displacement vector in Eq. (5) are the same as the last three entries of the displacement vector
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in Eq. (4). Also the three forces in the force vector in Eq. (5) have same values as the last three
forces in the force vector in Eq. (4).
Substituting Eq. (5) into the right side of Eq. (4), the equilibrium equations for the fully coupled

system are simplified as follows:

½Ds� þ
½0� ½0�

½0� ½ #DF �

" # !
YT1

YT2

YT3

YB1

YB2

YB3

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

FT1

FT2

FT3

0

0

0

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
; ð7Þ

where [0] denotes a 3	 3 zero matrix.
Furthermore, this 3d.o.f. (in terms of the motion of the primary mass) model can be easily

reduced to a s.d.o.f. model by constraining the motion of the primary mass. For instance, Eq. (7)
will be simplified to Eq. (8) if the system satisfies the following two constraints: (1) the primary
mass is permitted to move only in the y-direction (this happens if the rotational inertia of the
primary mass is infinite); and (2) the three parallel-mounted isolators are combined into one
equivalent isolator with static stiffness equal to the sum of the stiffness of the three isolators, and
this equivalent isolator is connected at the center of gravity of the primary mass.

½Ds� þ
0 0

0 #DF

" # !
YT1

YB1

( )
¼

FT1

0

( )
: ð8Þ

The symbols in Eq. (8) represent the same variables as in the 3d.o.f. system except that [Ds] is now
a 2	 2 matrix representing the dynamic properties of the equivalent isolator and #DF is a scalar.
Eq. (8) describes a s.d.o.f. system since the primary mass has only a vertical motion,YT1 : This
system is equivalent to the 3d.o.f. system as long as the translational d.o.f. of the primary mass is
concerned. Therefore, it is referred to as the equivalent s.d.o.f. model in the rest of the paper.

2.3. Isolation performance

The isolation performance is evaluated through the force transmissibility of the isolators and
the radiated sound power of the foundation. These two attributes can be derived after obtaining
the unknown displacements at the ends of each isolator. Specifically, the unknown displacements
are calculated using Eq. (7), for the 3d.o.f. system, or Eq. (8), for the s.d.o.f. system. The
transmitted force FBi through the ith isolator can then be evaluated by substituting the
corresponding displacements into the isolator model in Eq. (1) where force F2 in Eq. (1) represents
the transmitted force, FBi. The force transmissibility is easy to calculate after knowing FBi.
Furthermore, the velocity response of the foundation (plate) and the radiated sound power can
also be calculated since FBi is assumed to be the only excitation to the foundation.

ARTICLE IN PRESS

Y. Du et al. / Journal of Sound and Vibration 268 (2003) 751–778 759



2.3.1. Force transmissibility

In Fig. 6, because the three isolators are coupled by the primary mass, each external force FTj

will result in three transmitted forces, fij ; where i=1, 2, 3, through the three isolators. As the
result, the transmitted force at the bottom of each isolator has three components corresponding to
each of the three input forces FTj, where j=1, 2, 3. The force transmissibility of isolator i is defined
as the amplitude of the summation of these three transmitted force components at the bottom of
isolator i, due to the combined action of the three input forces FTj when their amplitudes are unit.
That is

Ti ¼
X3
j¼1

fij

�����
����� when jFTj j ¼ 1; ð9aÞ

or in a more general form:

Ti ¼
X3
j¼1

fij

FTj

�����
����� ¼

X3
s¼1

fsi

FTi

�����
�����: ð9bÞ

The second equal mark in Eq. (9b) is because of the reciprocity principle in calculating the
transmissibility between different d.o.f.s. More detail on this definition can be found in Appendix
C. Eq. (9) is consistent with the definition of the transmissibility, which stands for the amplitude
ratio of the output of a system to its input. According to Eq. (9), there are three transmissibilities
for this 3d.o.f. system, one for each of the three isolators. Generally, the transmissibility of a
multi-dimensional system is given by a matrix whose terms relate the input and output between
any combination of two d.o.f.’s as explained in Appendix C. Actually, the definition in Eq. (9) is a
combination of the column or row terms in the transmissibility matrix. It is suitable for measuring
the performance of a particular isolator in a multi-dimensional system and, it allows for a direct
comparison between the transmissibility of this particular isolator and its counterpart in a s.d.o.f.
system. Therefore, this definition is used in this study.

2.3.2. Sound power radiated by the foundation
In Ref. [14], the radiated sound power for a plate structure embedded in an infinite baffle is

given as

PðoÞ ¼
ora

8p2

Z Z
kaX

ffiffiffiffiffiffiffiffiffiffi
k2xþk2z

p jvðkx; kzÞj
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2a � k2x � k2z
p dkx dkz; ð10Þ

where P is the sound power measured in watts, ra is the density of the ambient medium, i.e., air,
ra ¼ 1:2 kg/m3, kx and kz are variables of integration, ka ¼ o=ca is the acoustic wavenumber
measured in 1/m, o is the frequency of the external excitation, ca ¼ 343m/s is the speed of sound
in air, and v(kx, kz) is the two-dimensional velocity wavenumber transform of the plate response.
The velocity wavenumber transform is given as

vðkx; kzÞ ¼
Z x¼N

x¼�N

Z z¼N

z¼�N

V ðx; zÞe jkxxe jkzz dx dz; ð11Þ

where V ðx; zÞ is the velocity response of the plate. It can be calculated by substituting the
transmitted forces FBi into the simply supported plate model and expressed as a linear
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combination of the plate’s modes as (see Appendix D)

Vðx; zÞ ¼
XN
m¼1

XN
n¼1

Fmnðx; zÞqmnðoÞjo; ð12Þ

where Fmnðx; zÞ is the modal shape and qmnðoÞ is the modal amplitude of the (m, n)th mode of the
plate.
For the simply supported plate, Eq. (11) has a closed form given as

vðkx; kzÞ ¼
2iop2

ab
ffiffiffiffiffiffiffiffiffiffiffi
msab

p XN
m¼1

XN
n¼1

qmnmn
½ð�1Þmeiakx � 1�½ð�1Þneibkz � 1�

½k2x � ðmp=aÞ2�½k2z � ðnp=bÞ2�
; ð13Þ

where a, b are the lateral dimensions of the plate and ms is the mass per unit area of the plate.
After substituting Eq. (13) into Eq. (10), the acoustic power can be calculated using some

numerical technique, such as the composite Simpson method.

3. Numerical results—effects of IRs on isolator performance

As mentioned in the introduction, previous studies on isolators’ IRs examined the effect of IR
on the force transmissibility using s.d.o.f. models [4–11]. This paper explores the importance of
IRs by examining both the force transmissibility of isolators and the sound radiated from the
foundation in a 3d.o.f. system. In this section, the force transmissibility and the radiated sound
power are computed for the system shown in Fig. 4, which will be considered as the reference

system.
The reference system has a primary mass m=27.8 kg. The moments of inertia about the x-axis

and the z-axis of the primary mass are Jxx=0.44 and Jzz=0.82 kgm
2, respectively. An external

force of amplitude F0 is applied on the primary mass. To induce rotations of the primary mass, the
force is applied off the center of gravity at (xF ; zF )=(0.1, 0.1). Fig. 7 shows a top view of the
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reference system to illustrate the positions of the external force, the primary mass, the three
isolators, and the foundation. The three isolators are identical with length 0.066m and cross-
sectional area 0.00123m2. The isolators are made of viscoelastic material with density 1103 kg/m3,
Young’s modulus 20MPa, and loss factor 0.1. The foundation is a 1.5	 1	 0.02m3 rectangular
steel plate (the long side is parallel to the x-axis) with simply supported boundary conditions. The
modulus of elasticity of the foundation is 2	 105MPa, the density is 7800 kg/m3, the loss factor is
0.01, and the Poisson ratio is 0.28. The above system parameters were selected on the basis of
information about practical systems. For example, the primary mass represents a small car engine.
The selection of the isolator parameters was based on both the properties of a commercial rubber
mount manufactured by Lord Corporation and the values presented in the bibliography [4,9]. The
parameters of the foundation were chosen in such a way that it simulates a typical flexible base,
such as the body of a car.
In the following figures, the force transmissibility T is plotted in decibels,

Td ¼ 20 log10ðTÞ ðdBÞ ð14Þ

and the radiated sound power is A-weighted as

LP;A ¼ 10logðP=10�12Þ þ LA ðdBA�Ref : 10�12 WÞ; ð15Þ

where LA is the A–weighting function [15].

3.1. Effect of the IRs on the force transmissibility

According to the traditional s.d.o.f. model with a massless isolator shown in Fig. 1(a), the force
transmissibility of the system will be attenuated at a rate of 12 dB per octave for frequencies well
above the system natural frequency [4,5]. However, this section will show that the attenuation rate
of a practical isolator is considerably lower than 12 dB per octave due to the internal dynamics of
the isolator.
Fig. 8 shows the three force transmissibility curves for isolators 1, 2 and 3 in the reference

system as a function of frequency. As it can be seen in Fig. 7, the positions of isolators 1 and 2
are symmetric about the z-axis. Therefore, the transmissibility curves for isolators 1 and 2 are
identical. From these transmissibility curves, it is easy to identify the resonant frequencies of the
reference system. These resonances correspond to the dynamics of the primary mass (i.e., system
resonances), the modes of the foundation, and the IRs of the isolators. Some of the resonant
frequencies of the system are listed in Table 1. The first three lowest frequencies are system
resonances corresponding to one translational and two rotational d.o.f.’s of the primary mass.
The resonance at 72Hz corresponds to the first mode of the foundation ((1,1) mode). It is
observed that the foundation’s first mode is very significant compared with other modes. This is
because the three transmitted forces through the isolators are in phase at this mode. However,
it is difficult to distinguish the foundation’s resonances of higher order. This is because the
foundation’s resonances at high frequencies have little effect on the transmissibility of the system
as long as the foundation is reasonably stiff, which will be shown later in Section 3.3. The three
evident resonances of the reference system at frequencies above 1000Hz correspond to the
isolators’ IRs. For comparison, the transmissibility predicted from the massless model of isolator 1
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and the transmissibility predicted from the equivalent s.d.o.f. model are also shown in the same
figure.
Two main conclusions can be drawn from Fig. 8. First, comparing the curves for isolator 1

predicted from two models that consider and neglect the isolator mass, respectively, it is seen that
the force transmissibility of the realistic isolator can be 20–30 dB higher at IR frequencies than
that of the ideal massless isolator. For the case shown in the figure, the transmissibility for the
portion of the curves (the valleys) between the IR peaks decreases at about 6 dB instead of 12 dB
per octave [4], which indicates that the traditional isolation model with massless isolators
significantly over-estimates the performance of realistic isolators at high frequencies where the IRs
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Table 1

Resonant frequencies for the reference system

Mode Frequency (Hz) Note

System resonances of primary mass 1 31.2 Translation in y direction

2 42.8 Rotation about z-axis

3 52.4 Rotation about x-axis

Foundation’s resonances 1 72.0 (1,1) mode

2 133.3 (2,1) mode

3 214.4 (1,2) mode

Isolators’ internal resonances 1 1016.7 1st IR

2 2033.4 2nd IR

3 3035.8 3rd IR
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occur. It should be mentioned that the asymptotic rate of decrease of the transmissibility is
approximately equal to 6 dB only for small values of the loss factor, e.g., for Zo0:2:
Second, it is also interesting to compare the transmissibilities of isolators 1, 2 and 3 in the

reference system to the transmissibility of the isolator in the equivalent s.d.o.f. system. It is
observed that the transmissibility for one or more isolators in the reference system can be either
higher or lower than the transmissibility for the s.d.o.f. system. For instance, the transmissibility
of isolator 1 is 5 dB higher than that of the s.d.o.f. system at the IR frequencies. Generally, the
transmissibility curve starts decreasing at a rate that depends primarily on the isolator internal
damping after the highest system resonance. Therefore, when the highest resonant frequency of
the primary system increases, the value of the transmissibility at the IRs increases. Since the
highest resonant frequency of the reference 3d.o.f. system is higher than the resonant frequency of
the equivalent s.d.o.f. system, the values of the transmissibility at the IRs of the 3d.o.f. are larger
than their counterparts of the s.d.o.f. system (Fig. 8). This observation indicates that the IR
problem in the multi-d.o.f. system can be more important than the s.d.o.f. model predicts. The
IRs can lead to significant deterioration of the performance of one or more isolators in a multi-
d.o.f. system but the s.d.o.f. model might fail to show this deterioration. It is recommended that
the importance of the IRs in a practical system, for example the engine mount system of vehicles,
should be assessed using a multi-d.o.f. model.
The effects of the IRs on the force transmissibility are shown in Fig. 8 for a particular set of

values of their parameters. In order to evaluate the importance of the IRs in practical isolators, it
is necessary to investigate how the isolator parameters affect the IRs and furthermore affect the
isolator performance. It is found that the IRs, their frequencies and amplitudes, are significantly
affected by three fundamental parameters: (1) the mass ratio (m), which is defined as the primary
mass to the total mass of isolators, (2) Young’s modulus (E), and (3) the loss factor (Z) of the
isolator material.
Fig. 9 shows the transmissibility of isolator 1 in the reference system for various loss factors and

mass ratios. Two values of mass ratio are considered: m ¼ 50 and 500. For each mass ratio, the
transmissibility is shown for values of the loss factor varying from 0.1 to 0.3. For comparison
purpose, the transmissibility of the massless isolator for m ¼ 500 is also shown. The resonances
below 100Hz correspond to the system resonances and the first mode of the foundation. There are
two groups of system resonances—one, with higher amplitudes, is for m ¼ 50 and the other is for
m ¼ 500: In the frequency range where the IRs are located, it is observed that the effects of the IRs
become less important as m increases because the transmissibility decreases with the mass ratio
increasing. From this point of view, therefore, it is desirable for a practical isolation system to
have a mass ratio as large as possible. However, no matter what the mass ratio is, the
transmissibility of the realistic isolator is always 20–30 dB higher compared with the ideal massless
isolator for the same system. That is, for any given mass ratio, the IRs are responsible for an
additional 20–30 dB degradation of the isolator performance at some frequencies.
The advantage of high damping is also illustrated in Fig. 9. Increasing damping decreases the

transmissibility at the frequency range where the resonances appear. The asymptotic decrease of
the valleys between the IR peaks becomes sharper with increasing damping. It is observed that,
when the material loss factor reaches 0.3, the IRs are effectively damped while the transmissibility
at other frequencies decreases only slightly instead of increasing. The model that accounts for the
IRs leads to opposite conclusions about the effect of damping than the traditional massless model
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(Fig. 1), which predicts that higher damping can increase the transmissibility. This discrepancy is
due to the different ways of representing the material damping in the models in Figs. 1 and 9 and
not the difference in the number of degrees of freedom. The lumped parameter model presented in
the introduction uses a constant viscous damping ratio, while the model in this paper uses a
constant loss factor to characterize the isolator damping. In practical applications, the internal
damping of isolator materials generally is better represented by a constant loss factor than by a
constant damping ratio, particularly at high frequencies [8]. Because of the advantage of high
damping, some previous researchers concluded that the IRs problem is not important since IRs
can be effectively attenuated by simply increasing the damping of the isolator materials [5,11].
However, this conclusion is only correct in theory. In practice, typical highly damped elastomers
exhibit poor returnability and greater drift than elastomers with medium and low damping levels
[9,16]. These drawbacks limit the values of the loss factor in practical isolators. For rubber-like
materials, most practical isolators have a loss factor between 0.05 and 0.2 [9]. The loss factor is
less than 0.05 for metal materials [17,18]. Given these ranges for the loss factor, and the
observations from Fig. 9, we can conclude that the IRs are important.
It can also be observed from Fig. 9 that neither the mass ratio nor the loss factor has

appreciable influence on the IR frequencies. The IR frequencies mainly depend on Young’s
modulus for a given isolator.
Fig. 10 shows the force transmissibility of isolator 1 in the reference system for values of

Young’s modulus in the range from 10 to 30MPa. Note that Young’s modulus for natural and
neoprene rubber compounds ranges from 2 to 50MPa [9]. The mass ratio and loss factor used in
Fig. 10 are constant and equal to 103 and 0.1, respectively. It is observed that when the modulus
decreases, the IR frequencies decrease. Therefore, more IRs will appear below a given frequency
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(e.g., 3000Hz) when the value of the modulus is reduced. Young’s modulus affects the
transmissibility level too. Since the isolator stiffness is directly related to Young’s modulus, all
other parameters being equal, a smaller Young’s modulus indicates a softer isolator, and lower
system resonance frequencies. The traditional vibration model, which neglects IR, indicates that
lowering the system natural frequency can decrease the transmissibility at high frequencies.
However, this conclusion could be misleading in real-life applications where the IRs occur. The
following example (based on results presented in Fig. 10) shows that, if the IRs are considered,
lowering the system natural frequency by decreasing Young’s modulus is not always an effective
practice for improving the isolator performance at high frequencies.
Consider a system with an isolator with Young’s modulus of 30MPa. This system is subjected

to a disturbance with energy in the range from 200 to 1500Hz. If a designer finds that the isolation
performance around 1400Hz is unsatisfactory because of the first IR, and the designer is not
aware of the IRs of the isolators, the designer is likely to opt for a softer isolator, for example one
with modulus 20MPa. However, although this new design will improve the isolation at around
1400Hz as well as some other frequencies, the designer will find a new resonance appearing at
1000Hz with almost the same amplitude as the resonance, which was originally at 1400Hz. The
reason is that switching to a softer isolator does not attenuate the original IR—it shifts the IR to
lower frequencies. For instance, in the previous example, when the isolator modulus is reduced
from 30 to 20MPa, the first IR frequency is consequently shifted from 1400 to 1000Hz, but the
amplitudes at the first IR frequency for both isolators are almost the same at about –30 dB. This
example reveals that if the IRs are not attenuated, decreasing or increasing the modulus of the
isolator cannot improve the isolator performance.
It is also observed in Fig. 10 that there is a notch at the peak of the first IR for E=10 and

30MPa. This phenomenon is due to the coupling effects between the IR and the foundation’s
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resonance. A notch will appear when the IR frequency coincides with one of the resonance
frequencies of the foundation. The coupling effects between the IR and the foundation resonance
will be discussed in Section 3.3.

3.2. Effect of the internal resonances on the radiated sound power

Force transmissibility has been widely used as a metric for the isolator performance. However,
this metric does not indicate the isolator performance in terms of noise reduction. Because
practical supporting structures are flexible, they will radiate noise under the excitation of the
transmitted forces through isolators. Therefore, the radiated sound power should be another
important measure of the isolator performance. To the best of the authors’ knowledge, no
publication discusses the IR problem in terms of the radiated noise.
In Fig. 11(a), the sound power radiated by the foundation of the reference system predicted by a

model using isolators with inertia is compared to the power predicted by a model of the same
system using massless isolators. The force transmissibility for isolator 1 is also plotted in
Fig. 11(b) as a reference. For completeness, the figure is generated by assuming that the external
disturbance F0 has constant spectral density from 1 to 3000Hz. However, in practice, the
disturbance in the low frequency range (e.g.,o100Hz) including the system resonant frequencies
is very small. This is because the isolation systems are designed in such a way that the excitation
frequencies occur in the isolation region, i.e., at frequencies higher than system resonances (Fig. 2).
Thus, for the reference system whose system resonances are all below 100Hz, it is reasonable to
assume that the excitation has little energy in frequencies below 200Hz, and use the total sound
power within the frequency band from 200 to 3000Hz to measure the isolator performance.
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Fig. 11 shows that the radiated sound power for the realistic isolator with mass is significantly
higher than the radiated sound power for the ideal, massless isolator in the range of frequencies
where the IRs occur. The total sound power for the cases of realistic and ideal massless isolators
are 47.6 and 41.9 dBA, respectively. This result indicates that a total sound power reduction of up
to 5.7 dB can be obtained if the IRs are suppressed. The potential sound power reduction at the
specific IR frequencies can be as high as 30 dB. The total sound power reduction or the sound
power reduction at the specific frequency can also be interpreted as the detrimental effect of the
IR on the radiated noise. These values reveal the significance of the IRs from the perspective of
noise radiation.
As shown earlier, the isolator parameters affect the amplitudes and frequencies of the IRs, and

consequently the level of the radiated noise. Therefore, it is useful to investigate the effect of the
isolator parameters on the radiated sound power. The total sound power reduction, within the
frequency range from 200 to 3000Hz, as a function of both Young’s modulus and loss factor of
the isolator material, is plotted in Fig. 12. The result in Fig. 12 demonstrates the beneficial effect
of high damping on the radiated noise as Fig. 9 did for the force transmissibility. It is seen that
when the loss factor increases, the sound power reduction decreases. This is because the IRs are
effectively attenuated by the high damping. Fig. 12 also shows that the noise reduction does not
change monotonically with Young’s modulus. This is due to the aggregation of the opposing
effects of increasing Young’s modulus on the overall response level in high frequencies and on the
response at the IRs frequencies (Fig. 10). Increasing the modulus will increase the overall response
level (which tends to increase the radiated noise), but it will also shift the IR frequencies towards
higher frequencies. The latter effect reduces the radiated noise because the excitation is assumed to
have no energy above 3000Hz. In general, increasing Young’s modulus tends to reduce noise
because the IR frequencies increase faster than the amplitudes do with increasing modulus.
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Fig. 12 demonstrates how much potential sound power reduction can be obtained by
suppressing the IRs. It is observed that the detrimental effect of the IRs on the radiated noise, i.e.,
the total sound power reduction, is insignificant in the area where the loss factor is high and
Young’s modulus is large. However, this area is not preferred in practice because (1) high
damping generally leads to large creep in viscoelastic materials and (2) large Young’s modulus
results in high system resonance frequencies, which degrade the isolation performance. According
to the parameters of most practical isolators made of viscoelastic materials [9], the total sound
power reduction ranges from 3 to 22 dB.
It should be pointed out that Fig. 12 is plotted by using values of Young’s modulus and loss

factor mainly for elastomers. The observations and conclusions from Fig. 12 are not valid for
metal springs because, compared with elastomers, metals generally have very large modulus of
elasticity and very small loss factor. Furthermore, a metal spring functions in a different way than
an elastomer isolator. However, it is possible to show the effects of the IRs in the metal coil
springs using the model presented in this paper. In order to conduct the analysis, the coil springs
are equated to ‘‘long-rods’’ and the equivalent ‘‘rod-lengths’’ for the coil springs are calculated
according to the method introduced in Ref. [7].
Fig. 13 shows the force transmissibility and radiated sound power for the reference system while

replacing the viscoelastic isolators with metallic coil springs. The three coil springs are identical
and have the same static stiffness as the previously used viscoelastic isolators. The loss factor used
for the coil springs is 0.01, which is typical for metal material. Fig. 13(a) compares the radiated
sound powers for the coil springs with and without inertia. The total sound powers for the cases of
‘‘realistic’’ and ‘‘ideal’’ massless coil springs are 65.8 and 42.1 dBA, respectively. This means that a
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total sound power reduction of 23.7 dB can be obtained by suppressing the IRs in these coil
springs. The corresponding reduction in sound power for the viscoelastic isolators is only 5.7 dB.
Fig. 13(b) shows that at many frequencies the transmissibility curve for the coil spring with mass,
i.e., with IRs, is more than 30 dB higher than that for the coil spring without mass. The first IR of
the coil spring appears at 161Hz. Compared to the first IR of 1016.7Hz of the viscoelastic
isolators (Fig. 8), it is observed that the IRs in metal springs appear at much lower frequencies and
have much higher value. These results reveal that the IRs in metal springs are very significant; they
greatly increase the sound power radiated by the foundation and the force transmissibility across
isolators. More detailed analysis about IRs in metal springs and their suppression can be found in
Refs. [6,7].

3.3. Influence of the foundation flexbility on the internal resonances

In Section 3.1, it was already shown that the curve representing the force transmissibility as a
function of the frequency has many resonance peaks corresponding to the foundation modes.
Generally, the effect of the foundation resonances on the force transmissibility is insignificant
(Figs. 9 and 10) especially at higher frequencies where the IRs usually occur [19,20]. However,
changing the foundation flexibility will shift the resonant frequencies of the system. In the case
where one IR frequency coincides with one of the foundation modes, the foundation acts as a
dynamic vibration absorber (DVA) tuned to the IR frequency. In this case, the peak at the
original IR frequency is suppressed, and two new resonance peaks appear on both sides of the
original IR frequency. This effect has been shown in Fig. 10. Since the foundation flexibility does
not affect significantly the characteristics of the transmissibility curve at high frequencies, the
effect of this DVA is consequently slight.
Fig. 14 compares the responses of the reference system with stiff and soft foundations. The

foundation stiffness is adjusted by changing the thickness while keeping all other parameters
constant. Fig. 14(a) shows that the level of the radiated sound power for the soft foundation is
higher than that for the stiff foundation at most frequencies. The reason is that a soft structure is
more efficient for sound radiation than a stiff structure. The total sound power is 47.6 and
54.4 dBA for the stiff and soft foundations, respectively. The total sound power radiation by the
soft foundation is 6.8 dB higher than that by the stiff foundation. From this perspective,
increasing the foundation stiffness is a good method for reducing the noise radiation, especially
when the IRs occur. On the contrary, the foundation flexibility has little influence on the force
transmissibility function. As shown in Fig. 14(b), except for the obvious shifting of the resonant
frequencies, the level of the transmissibility curves for soft and stiff foundations have little effect
on the frequency range where the IRs occur.

3.4. Influence of variation in the properties of isolators on the internal resonances

The effects of changing the isolator material properties, i.e., Young’s modulus and loss factor,
on the IRs have been investigated in Sections 3.1 and 3.2. For simplicity, constant values of
isolator properties were employed in Figs. 9 and 10. In practice, Snowdon [5,17] and Dejong et al.
[21] have shown that both the dynamic modulus and the loss factor of isolator material are
functions of frequency and temperature. Specifically, for room temperatures and through the
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range of frequencies normally of concern in vibration problems, the dynamic modulus and loss
factor generally slowly increase with increasing frequency and decreases with increasing
temperature.
This temperature- and frequency-dependency information can be easily synthesized with results

presented in Figs. 9 and 10 to explore the significance of the IRs in practical isolators at different
frequencies and temperatures. For example, it is observed from Fig. 9 that high damping helps
attenuate the IR amplitudes and from Fig. 10 that increasing modulus moves IRs towards higher
frequencies, which may be out of the range of interest. It is also known that practically, the
modulus and damping will increase as the frequency increases. Combining all those information,
it turns out that the effects of the first several IRs are dominant within the range of practical
interest. Therefore, if one wants to improve the isolator performance by attenuating the IRs, one
should primarily try to suppress the first several IRs.

4. Conclusions

Although researchers have been aware of the IRs in isolators since the 1950s, they did not think
that they were of primary concern, particularly when viscoelastic isolators are used. This
conclusion is not accurate because (1) previous researchers used a s.d.o.f. model, which may fail to
reveal the importance of IRs, and (2) previous researchers did not investigate the effects of IRs on
the radiated sound power.
To evaluate the importance of IRs, a system of a rigid primary mass connected to a flexible

foundation through three isolators was considered in this paper. The force transmissibility and the
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sound power radiated by the foundation were used as two metrics to demonstrate the significance
of IRs.
Comparison of the force transmissibility of the realistic isolator model with mass and the ideal

massless isolator model shows that the effects of IRs are important. The transmissibility for the
isolator with mass may be 20–30 dB higher than that for the massless isolator at the IR
frequencies. This result is similar to that reported by previous researchers [4–5, 8–11].
Furthermore, this paper shows that the IRs can result in a more significant deterioration of the
performance of one or more isolators in a multi-d.o.f. system than previous researchers predicted
using the s.d.o.f. model. Although this paper shows that the IRs in viscoelastic isolators can be
attenuated using high damping of materials as previous studies stated, in real life it is impractical
to build vibration isolators using materials with high damping. The loss factor in most practical
viscoelastic isolators is too low to effectively suppress the IRs.
Besides evaluating the force transmissibility, one also needs to examine the radiated sound

power to assess the importance of IRs. It was shown that neglecting the mass of isolators can lead
to significant underestimation of the sound radiated by a foundation at frequencies around which
the IRs occur. The analytical model shows that the total sound power, for the reference system, in
the frequency band of 200–3000Hz may increase 3–22 dB due to the IRs in the viscoelastic
isolators.
The IRs in metal coil springs were briefly discussed in this paper. It is evident that the IR

problem in metal springs is very significant from the perspective of either the force transmissibility
or the radiated sound power.
Finally, it was shown that the foundation flexibility does not play an important role in the force

transmissibility function of the isolator. However, the noise radiation is greatly affected by the
foundation flexibility.
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Appendix A. Derivation of the dyanmic stiffness matrix of the isolator

Consider the rod representing the isolator shown in Fig. 15. The rod is assumed to be thin and
uniform along its length L subjected to longitudinal forces F1(t) and F2(t). The application of
these forces will produce a longitudinal displacement uðe; tÞ: The density, modulus of elasticity and
cross-sectional area of the rod are denoted as r; E and S, respectively. To account for the damping
of the rod, a complex form of the modulus of elasticity is used as follows:

*E ¼ Eð1þ iZÞ; ðA:1Þ

where Z is the loss factor.
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The equation of motion for the axial vibration of this rod is given by [22]

@2uðe; tÞ
@e2

¼
1

c2
@2uðe; tÞ
@t2

; ðA:2Þ

where c is the complex wave speed given as

c ¼
ffiffiffiffiffiffiffiffiffi
*E=r

q
: ðA:3Þ

The harmonic solution of the one-dimensional wave equation has the form

uðe; tÞ ¼ ðAe�ike þ BeikeÞeiot; ðA:4Þ

where A and B are two constants that depend on the boundary conditions, o is the excitation
angular frequency, and k ¼ o=c is the wavenumber.
The objective is to obtain the dynamic stiffness matrix of the isolator that relates the

displacements uð0; tÞ and uðL; tÞ to the forces F1ðtÞ and F2ðtÞ; i.e., a 2	 2 matrix. The diagonal
terms of this matrix represent the force required to induce a unit displacement on the d.o.f. where
the force is applied, while the other d.o.f. is fixed. The cross terms of this matrix represent the
force required to keep the d.o.f. where the force is applied fixed, while the other d.o.f. undergoes a
unit displacement. Because of the reciprocity principle, the two cross terms are the same; on the
other hand, the two diagonal terms are also identical due to the geometrical symmetry of the
isolator. Thus, the elements in the matrix are obtained by imposing the following boundary
conditions:

uð0; tÞ ¼ 1 � eiot; ðA:5aÞ

at e ¼ 0; i.e., the displacement is assumed to be one and

uðL; tÞ ¼ 0; ðA:5bÞ

at e ¼ L; i.e., the displacement vanishes at the opposite end.
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Fig. 15. Longitudinal vibration in a continuous rod.
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The constants A and B can be computed by substituting Eq. (A.4) into Eqs. (A.5a, b) yielding

A ¼
i sinðkLÞ þ cosðkLÞ

i2 sinðkLÞ
; B ¼

i sinðkLÞ � cosðkLÞ
i2 sinðkLÞ

: ðA:6a;bÞ

On the other hand, the external forces at both ends of the rod should be equal to the internal
forces. That is

�F1ðtÞ ¼ � *ES
@u

@e

����
e¼L

; F2ðtÞ ¼ � *ES
@u

@e

����
e¼0

: ðA:7a;bÞ

Substituting Eqs. (A.6a, b) into Eqs. (A.7a, b) yields the cross terms and the diagonal terms,
respectively. They are

Do ¼ kS *E=sinðkLÞ; Dd ¼ kS *E cotðkLÞ: ðA:8a;bÞ

Therefore, the dynamic stiffness matrix of the isolator is

F1ðtÞ

F2ðtÞ

( )
¼

Dd �Do

�Do Dd

" #
uðL; tÞ

uð0; tÞ

( )
: ðA:9Þ

Appendix B. Derivation of the EOM of the primary mass–isolators substructure

The motion of the primary mass can be simply expressed with one translational d.o.f. Ycg at the
center of gravity, and two rotational d.o.f.’s Yx and Yz about the x- and z-axis, respectively.
However, to relate motions of isolators to motions of the primary mass, it is convenient to
describe the d.o.f.s of the primary mass using the three translations at the mounting points
between the primary mass and isolators. As illustrated in Fig. 16, the lateral dimensions Lx(Lz) of
the primary mass are assumed to be much larger than the thickness t of the primary mass.
Therefore, the thickness can be ignored and the three translations at the mounting points are
expressed as

YT1

YT2

YT3

8><
>:

9>=
>; ¼ ½Tc�

Ycg

Yx

Yz

8><
>:

9>=
>;; ðB:1Þ

where

½Tc� ¼

1 �L1z L1x

1 �L2z L2x

1 �L3z L3x

2
64

3
75: ðB:2Þ

Lrx and Lrz, for r=1, 2, 3, are the distances of the rth mounting point to the center of gravity in
the x and z directions, respectively.
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The kinetic energy of the primary mass is calculated by

EK ¼
1

2

’Ycg

’Yx

’Yz

8><
>:

9>=
>;
T

m 0 0

0 Jxx 0

0 0 Jzz

2
64

3
75

’Ycg

’Yx

’Yz

8><
>:

9>=
>;: ðB:3Þ

Substituting Eq. (B.1) into Eq. (B.3) gives

EK ¼
1

2

’YT1

’YT2

’YT3

8><
>:

9>=
>;
T

½Tc��T

m 0 0

0 Jxx 0

0 0 Jzz

2
64

3
75½Tc��1

0
B@

1
CA

’YT1

’YT2

’YT3

8><
>:

9>=
>;: ðB:4Þ

Thus the mass matrix with respect to the three d.o.f.s at the mounting points is

½Me� ¼ ½Tc��T
m 0 0

0 Jxx 0

0 0 Jzz

2
64

3
75T�1

c : ðB:5Þ

The three forces acting on the mounting points that are equivalent to the external force F0 can be
expressed by

FT1

FT2

FT3

8><
>:

9>=
>; ¼

1 1 1

L1z L2z L3z

L1x L2x L3x

2
64

3
75
�1

1

LFz

LFx

8><
>:

9>=
>;F0; ðB:6Þ

where LFx and LFz are the distances of the external force to the center of gravity in the x and z

directions, respectively.
The EOM of the primary mass with respect to the three translational d.o.f. at the mounting

points can be written

�o2½Me�

YT1

YT2

YT3

8><
>:

9>=
>; ¼

FT1

FT2

FT3

8><
>:

9>=
>;�

Fe1

Fe2

Fe3

8><
>:

9>=
>;; ðB:7Þ

where Fei (i denotes the number of the isolator, which can be 1, 2 and 3) is the reaction force of the
isolator acting on the primary mass. According to the isolator model, the reaction force of the
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Fig. 16. Side view of the primary mass: O—center of gravity; G—mounting point between the primary mass and
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isolator can be computed as

Fei
¼ Dd

i YTi
� D0

i YBi
: ðB:8Þ

On the other hand, the transmitted force through each isolator can be expressed as

�FBi
¼ �D0

i YTi
þ Dd

i YBi
: ðB:9Þ

Substituting Eq. (B.8) into Eq. (B.7) and then writing Eqs. (B.7) and (B.9) in a matrix form gives
the EOM shown in Eq. (4):

½Ds�

YT1

YT2

YT3

YB1

YB2

YB3

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

�o2½Me� þ

Dd
1 0 0

0 Dd
2 0

0 0 Dd
3

2
64

3
75

�Do
1 0 0

0 �Do
2 0

0 0 �Do
3

�Do
1 0 0

0 �Do
2 0

0 0 �Do
3

Dd
1 0 0

0 Dd
2 0

0 0 Dd
3

2
6666666664

3
7777777775

YT1

YT2

YT3

YB1

YB2

YB3

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

FT1

FT2

FT3

�FB1

�FB2

�FB3

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
:

ðB:10Þ

Appendix C. Explanation on the definition of the force transmissibility

Theoretically, the transmissibility of a multi-dimensional system should be given as a matrix.
For example, considering the system shown in Fig. 6, there are three input forces FTj, for j=1, 2
and 3, acting on the top of each of the three isolators; accordingly, each input force FTj results in a
transmitted force fij through isolator i, for i=1, 2, and 3. Therefore, the transmissibility can be
expressed using a 3	 3 matrix as shown in Eq. (C.1). The entry at the (i, j ) position of this matrix
denotes the force transmitted to the plate at the bottom of isolator i due to a unit input force
applied at the top of isolator j. The transmissibility matrix is written as

T ¼

f11

FT1

f12

FT2

f13

FT3

f21

FT1

f22

FT2

f23

FT3

f31

FT1

f32

FT2

f33

FT3

2
6666664

3
7777775
; ðC:1Þ

where FTj, j = 1, 2, 3 are the three input forces at the points where each the three isolators are
connected to the primary mass, and fij is the force at the bottom of the ith isolator due to the
application of FTj, only. Due to the reciprocity principle, the matrix in Eq. (C.1) is symmetric.
Note that the terms in each row correspond to the transmitted forces through a particular isolator
due to the three input forces acting from the primary mass. The summation of the terms in the ith
row can be considered as a metric to describe the performance of the ith isolator, which is the
definition of force transmissibility in Eq. (9). Because of the symmetry of the transmissibility
matrix, the row summation is equivalent to the column summation. Since the jth column terms
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have the same denominator, which is the jth input force, their sum can be considered as the system
transmissibility with respect to that force.

Appendix D. Velocity response of a simply supported rectangular plate under a concentrated force

excitation

The displacement response of a simply supported rectangular plate under the excitation of a
concentrated force is given by [12,13]

W ðx; z;oÞ ¼
XN
m¼1

XN
n¼1

Fmnðx; zÞqmnðoÞ; ðD:1Þ

where Fmnðx; zÞ is the mode shape and qmnðoÞis the modal amplitude of the (m, n) mode, which are
given as

Fmnðx; zÞ ¼
2ffiffiffiffiffiffiffiffiffiffiffi

mdab
p sin

mpx

a

! "
sin

npz

b

! "
; ðD:2Þ

and

qmnðoÞ ¼ ðo2mn � o2Þ�1
2ffiffiffiffiffiffiffiffiffiffiffi

mdab
p sin

mpxf

a

! "
sin

npzf

b

! "
F ðoÞ; ðD:3Þ

in which omn is the (m,n) natural frequency of the simply supported plate; a, b the length and
width of the plate; md the mass of per unit area of the plate; (xf ; zf ) the position of the external
force on the plate; and F ðoÞ: the Fourier transform of the time-dependent external force.
The velocity response of the plate is given by

V ðx; z;oÞ ¼ joW ðx; z;oÞ ¼
XN
m¼1

XN
n¼1

Fmnðx; zÞqmnðoÞjo: ðD:4Þ
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